EuroGebra Worksheets

Application of Menelaus Theorem to the Bisector Theorem

	Construct the triangle ABC
	Create the angle bisector of the angle A
$\underset{\text { Intersect }}{>}$	Create the intersection point D from Bisector A and segment(BC)
Ray	Create the CB ray and then the point Z on it, outside the segment BC
	Create the bisector of the angle ZBA.
Ray	Create the CA ray
$\underset{\text { Intersect }}{\gg}$	Create the intersect point E between ray CA and bisector of the ZBA angle
Angle Bisector	Create the bisector of the angle BAC.
Intersect	Create the intersect point F between segment $A B$ and bisector of the $B A C$ angle
Segment	- Create segment BD (=k) - Create segment DC (=I) - Create segment EC (=m) - Create segment EA (=n) - Create segment FA (=p) - Create segment FB (=q)
$\underset{y}{\infty} \text { 最 }$	Go to Algebra section and type

EuroGebra Worksheets

Application to Ceva Theorem

	Construct the triangle ABC
Angle Bisector	- Create the bisector of the BAC angle - Create the bisector of the $A B C$ angle
$\underset{\text { Intersect }}{\gg}$	Create the intersection point D of the two previous bisectors
	Create the perpendicular line from point D to $A B$ segment
Intersect	Create the intersection point E of the perpendicular line and $A B$ segment
Circle with Centre	Create the inner circle d: (D,E)
Intersect	Create the intersection points G and F of the circle and the triangle.
Segment	Create the segments AG, BF, CE, BG, GC, CF, FA, AE, EB
㽞 \&	Go to Algebra section and type $: \frac{\ell}{m} \cdot \frac{n}{p} \cdot \frac{q}{r} \quad(=e)$
	Go to Geometry section and Text button and type:
Can you find a relation to the Ceva's Theorem?	

EuroGebra Worksheets

Ceva Theorem

	Construct the triangle ABC
- A Point	- Create point D on the segment $B C$ - Create point E on the segment AC
Segment	- Create the segment AD - Create the segment BE
$\underset{\text { Intersect }}{\gg}$	Create the intersection point F from segments $A D$ and $B E$
Ray	Create the CF ray
	Create the intersection point G from segments AB and ray CF
Segment	- Create segment $\mathrm{BD}(=\mathrm{i})$ - Create segment DC (=j) - Create segment EC (=k) - Create segment EA (=I) - Create segment GA (=m) - Create segment GB (=n)
$\because \text { 禺 } \quad \text { II }$	Go to Algebra section and type $\mathrm{i}^{\mathrm{i}} \cdot \frac{\mathrm{k}}{\mathrm{j}} \cdot \frac{\mathrm{m}}{\mathrm{n}}(=\mathrm{d})$
	Go to Geometry section and Text button and type: \frac $\{B D\} D C\}$ - $\operatorname{frac}\{C E\}$ EA $\}$ - $\operatorname{frac}\{A G\} G B\}=\mid$ frac $\{$ $i\} j\}-\operatorname{frac}\{k\} 1\} \cdot \operatorname{frac}\{m\} \cap\}=d$
Can you find a relation to the Menelaos Theorem?	

EuroGebra Worksheets

Menelaus Theorem

Segment	Construct the triangle ABC
Point ${ }^{\text {- }}$	Create a point D inside the segment $B C$
	Create the ray CA
\bullet^{A} Point	Create a point E on the ray CA outside of the segment AC
Segment	Create the segment ED
Intersect	Create the intersect point F of ED and AB
Segment	Define the segments BD, DC,EC, EA, FA, FB (with this order)

EuroGebra Worksheets

Quadratic Equation

EuroGebra Worksheets

Thales Theorem

Line	Create a straight line of points A, B

EuroGebra Worksheets

Trigonometric circle and basic trigonometric identities

Graphics + Show Axes \# Show Grid No Grid Major Gridlines Major and Minor Gridlines. Polar Isometric C. Snap to Grid C. Clear all Traces (B) Zoom to fit (\% Settings	Left Click and select Major gridlines
$\begin{gathered} \bullet^{\text {A }} \\ \text { Point } \\ \hline \end{gathered}$	Create point $\mathrm{A}(0,0)$ and $\mathrm{B}(1,0)$ and $\mathrm{C}(0,1)$
Circle with Centre	Create circle (A, B)
Perpendiculaı Line	\qquad PerpendicularLine $(B, \times A \times i s$ Create: JerpendicularLine(C, yAxis and
\bullet^{A} Point	Create point D on the circle
	Create line AD
\qquad	Create Angle(BAD) $=\alpha$

